Электромеханическое сопряжение в мышцах. Электромеханическое сопряжение в клетке скелетных мышц Хемомеханический этап мышечного сокращения

Строение скелетных мышц.
Каждая мышца состоит из параллельных пучков поперечно-полосатых мышечных волокон. Каждый пучок одет оболочкой. И вся мышца снаружи покрыта тонкой соединительнотканной оболочкой, защищающей мышечную ткань. Целостное мышечное волокно сокращается в результате стимуляции моторным нервом.
Каждое мышечное волокно также имеет снаружи тонкую оболочку, а внутри него находятся многочисленные тонкие сократительные нити - миофибриллы и большое количество ядер. Миофибриллы, с свою очередь, состоят из тончайших нитей двух типов - толстых (белковые молекулы миозина) и тонких (белок актина). Так как они образованы различными видами белка, под микроскопом видны чередующиеся темные и светлые полосы. Отсюда и название скелетной мышечной ткани - поперечно-полосатая.
У человека скелетные мышцы состоят из волокон двух типов - красных и белых. Они различаются составом и количеством миофибрилл, а главное - особенностями сокращения. Так называемые белые мышечные волокна сокращаются быстро, но быстро и устают; красные волокна сокращаются медленнее, но могут оставаться в сокращенном состоянии долго. В зависимости от функции мышц в них преобладают те или иные типы волокон.
Мышцы выполняют большую работу, поэтому они богаты кровеносными сосудами, по которым кровь снабжает их кислородом, питательными веществами, выносит продукты обмена веществ.
Мышцы крепятся к костям с помощью нерастяжимых сухожилий, которые срастаются с надкостницей. Обычно мышцы одним концом крепятся выше, а другим ниже сустава. При таком креплении сокращение мышц приводит в движение кости в суставах.Типичная скелетная мышца прикреплена как минимум к двум костям. Скелетные мышцы обеспечивают произвольные движения.

К скелетной мышце подходят нервы, которые несут сигналы от центральной нервной системы, вызывающие мышечное сокращение; по ним также обратно в нервную систему передается сенсорная информация о степени растяжения или сокращения мышцы.
Скелетные мышцы редко бывают полностью расслаблены; даже если движения в суставе нет, в мышце все равно поддерживается состояние слабого сокращения (мышечный тонус).
«Теория скользящих нитей» - концепция, объясняющая механизм сокращения миофибриллы. Разработана независимо друг от друга Хью Эзмором Хаксли и Сэром Андру Филдингом Хаксли
Согласно данной концепции, укорочение саркомера (части миофибриллы) во время сокращения происходит благодаря активному скольжению актиновых нитей относительно миозиновых нитей.между актином и миозином образуются так называемые поперечные мостики. Боковые мостики миозина цепляются за активные центры актина и сдвигают актин - происходит сокращение. Далее мостик отцепляется и прицепляется к следующему центру, передвигаясь дальше.При сокращении мышца укорачивается, но мы не чувствуем напряжение - мышца расслаблена - это изотоническое сокращение. Постоянная длина, но меняется степень напряжения в мышце - изометрическое сокращение. Напряжение мышцы с изменением её длины - эксцентрическое сокращение.
Электромеханической сопряжение - переход электрического движения в механическое, в результате чего происходит сокращение мышц.
Нервно-мышечный синапс - эффекторное нервное окончание на скелетном мышечном волокне.



При произвольной внутренней команде сокращение мышцы человека начинается примерно через 0.05 с (50 мс). За это время моторная команда передается от коры больших полушарий к мотонейронам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора преодолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синоптических пузырьках в пресинаптической части синапса. Нервный импульс вызывает перемещение синаптических пузырьков к пресинаптической мембране, их опорожнение и выход медиатора в синаптическую щель Действие ацетил-холина на постсинаптическую мембрану чрезвычайно кратковременно, после чего он разрушаетсся ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо-нания запасы ацетил-холина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхолини превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, В результате чего нарушается проведение возбуждения через нервно-мышечный синапс.
Выделившийся в синаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение или небольшой амплитуды потенциал концевой пластинки (ПКП).
При достаточной частоте нервных импульсов ПКП достигает порогового значения и на мышечной мембране развивается мышечный потенциал действия. Он распространяется вдоль по поверхности мышечного волокна и заходит в поперечные трубочки внутрь волокна. Повышая проницаемость клеточных мембран, потенциал действия вызывает выход из цистерн и трубочек саркоплаэматического ретикулума ионов Са2+, которые проникают в миофибриллы, к центрам связывания этих ионов на молекулах актина.
Под влиянием Са2+ длинные молекулы тропомиозина проворачиваются вдоль оси и скрываются в желобки между сферическими молекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей актина вдоль нитей миозина с обоих концов саркомера к его центру, т.е. механическую реакцию мышечного волокна.
Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са2+. Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са2+новых мостиков на следующем участке актиновой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна - через 20 мс. Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы. Расслабление мышечного волокна связано с работой особого механизма - «кальциевого насоса», который обеспечивает откачку ионов Са2+ из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков . Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках (см. " Проведение возбуждения между клетками ". Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности ( рис. 30.14). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+, которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

В состоянии покоя в мышечном волокне концентрация свободного ионизированного Са2+ в цитоплазме вокруг толстых и тонких филаментов очень низка, около одной десятимиллионной доли моля/л. При такой низкой концентрации ионы Са2+ занимают очень небольшое количество участков связывания на молекулах тропонина, поэтому тропомиозин блокирует активность поперечных мостиков . После потенциала действия концентрация ионов Са2+ в цитоплазме быстро возрастает, и они связываются с тропонином , устраняя блокирующий эффект тропомиозина и инициируя цикл поперечных мостиков. Источником поступления Са2+ в цитоплазму является саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие "рваного рукава", сегментами которого окружены A-диски и I-диски ( рис. 30.15). Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн , соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са2+; после возбуждения плазматической мембраны он высвобождается.

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков , проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином , т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу - интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам ; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление ( рис. 30.16). Источником энергии для кальциевого насоса служит АТФ - это одна из трех его главных функций в мышечном сокращении (

Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине клетки (электромеханическое сопряжение) включает в себя несколько последовательных процессов, ключевую роль в которых играют ионы Са2+.


В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 7.3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.


В результате срабатывания нейро-мышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.


Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са2+-каналов, через которые в саркоплазму выходят ионы Са2+ (рис. 7.3, В).


Ионы Са2+ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 7.3, Г).


К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 7.3, Д).

Рис. 7.3. Механизм сопряжения возбуждения и сокращения:


1 – поперечная трубочка саркоплазматичекой мембраны, 2 –саркоплазматичекий ретикулум, 3 – ион Са2+, 4 – молекула тропонина, 5 – молекула тропомиозина. Объяснение – в тексте


Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения.


  • Можно выделить основные 4 ди. Электромеханическое сопряжение в клетке скелетных мышц клетки (электромеханическое сопряжение )...


  • Электромеханическое сопряжение в клетке скелетных мышц . Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине клетки (э... подробнее ».


  • Электромеханическое сопряжение в клетке скелетных мышц . Передача команды к сокращению от возбужденной клеточной мембраны к миофибриллам в глубине кле. Загрузка.


  • Механическая модель мышцы Хилла. Скелетная мышца в покое по механическому поведению представляет собой вязкоупругий материал. В частности, для нее характерна релаксация напряжения.


  • Физиологические свойства атипического миокарда: 1) возбудимость ниже, чем у скелетных мышц , но выше, чем у клеток сократительного миокарда, поэтому именно здесь происходит генерация нервных импульсов


  • Структура мышечной клетки и мышечных белков. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее и.
    При сокращении сердечной мышцы (систоле) кровь выбрасывается из сердца в аорту и отходящие от нее артерии.


  • Физические и физиологические свойства скелетных , сердечной и гладких мышц . По морфологическим признакам выделяют три группы мышц : 1) поперечно-полосатые мышцы (скелетные мышцы )


  • 2) аппарат контроля – группу нервных клеток , в которых формируется модель будущего результата; 3) обратную афферентацию – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного резуль-тэта


  • По морфологическим признакам выделяют три группы мышц : 1) поперечно-полосатые мышцы (скелетные мышц ... подробнее ».
    Мионевральный (нервно-мышечный ) синапс – образован аксоном мотонейрона и мышечной клеткой .


  • Проявляется распространенным отложением гликогена в печени, почках, сердечной мышце , в области нервной системы, скелетной мускулатуры .
    5) определение гликогена в биоптате печени, в клетках периферической крови

Найдено похожих страниц:10


Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу.

Процесс сокращения кардиомиоцита происходит в следующем порядке:

1) при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы Na + входят в клетку, вызывая деполяризацию мембраны;

2) в результате деполяризация мембраны открываются потенциал-зависимые медленные кальциевые каналы (время жизни 200 мс), и ионы Са 2+ поступают из внеклеточной среды, где их концентрация ≈ 2 ∙10 3 моль / л, внутрь клетки (внутриклеточная концентрация Са 2+ ≈10-7 моль / л);

3) кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са 2+ (в СР их концентрация достигает более 10 -3 моль/л), и высвобождают кальций из пузырьков СР. В результате возникает так называемый «кальциевый залп». Ионы Са 2+ из СР поступают на актин-миозиновый комплекс саркомера, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4) по окончании процесса сокращения миофибрилл ионы Са 2+ с помощью кальциевых насосов, находящихся в мембране СР, активно закачиваются внутрь саркоплазматического ретикулума;

5) процесс электромеханического сопряжения заканчивается тем, что ионы Na + и Са 2+ - активно выводятся во внеклеточную среду с помощью соответствующих ионных насосов.

Пассивные потоки 1,2 и 3 обеспечивают процесс сокращения мышцы, а активные потоки 4 и 5 - ее расслабление.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Заметим, что описанный выше двухступенчатый процесс сопряжения доказан экспериментально.

Опыты показали, что: а) отсутствие потока кальция извне клетки I прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменения амплитуды потока приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов Са 2+ внутрь клетки выполняет, таким образом, две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.

3. Цель деятельности студентов на занятии:

Студент должен знать:

1.Структуру мышцы.

2.Основные положения модели скользящих нитей.

3.Трехкомпонентную модель Хилла.

4.Изометрический и изотонический режимы исследования характеристик сокращающихся мышц.

5.Механизм электромеханического сопряжения в мышцах.

Студент должен уметь:

1. Объяснять модель скользящих нитей.

2. Объяснять трехкомпонентную модель Хилла.

3. Анализировать уравнение Хилла.

4. Объяснять процесс сокращения кардиомицита.

5. Решать ситуационные задачи по данной теме.

1. Структура мышцы. Саркомер.

2. Модель скользящих нитей.

3. Пассивное растяжение мышцы. Трехкомпонентная модель Хилла.

4. Активное сокращение мышцы.

5. Уравнение Хилла.

6. Мощность одиночного сокращения.

7. Электромеханическое сопряжение.

8. Решение ситуационных задач.

5. Перечень вопросов для проверки исходного уровня знаний:

1. Что является элементарной сократительной единицей мышечной ткани?

2. Опишите микроструктуру саркомера.

3. Что является механохимическим преобразователем энергии АТФ?

4. Как осуществляется процесс укорочения и генерации силы в саркомере? Каковы основные положения модели скользящих нитей?

5. Почему для исследования процесса сокращения мышцы приходиться разделять режимы ее работы на изотонический и изометрический? Какой режим реализуется в реальных условиях сокращения?

6.Что понимают под электромеханическим сопряжением? Какие фазы электромеханического сопряжения в кардиомиоците и в скелетной мышце осуществляются пассивными потоками ионов, а какие активными?

6. Перечень вопросов для проверки конечного уровня знаний:

1. Охарактеризуйте трехкомпонентную модель Хилла.

2. Объясните механизм активного сокращения мышцы.

3. Почему при различных начальных длинах мышцы изометрическое сокращение имеет различную форму зависимости F(t)?

4. Можно ли по кривой зависимости V(Р) Хилла (рис. 7) определить, какой максимальный груз может удерживать мышца?

5. Опишите процесс сокращения кардиомицита.

7.Решите задачи:

1.Сухожилие длиной 16 см под действием силы 12,4 Н удлиняется на 3,3 мм. Сухожилие можно считать круглым в сечении с диаметром 8,6 мм. Рассчитайте модуль упругости этого сухожилия.

2.Площадь сечения бедренной кости человека равна 3 см 2 . Какую силу сжатия может выдержать кость, не разрушаясь?

3.Для определения механических свойств костной ткани была взятапластинка из свода черепа со следующими размерами: длина L = 5 см, ширина b = 1 см, толщина h = 0,5 см. Под действием силы F = 200 Н пластинка удлинилась на ∆L = 1,2∙10 -3 см. Определите по этим данным модуль Юнга костной ткани при деформации растяжения.

4.Из большеберцовой кости собаки вырезали стержень прямоугольного сечения с ребрами а = 2 мм, b = 5 мм. Стержень положили на упоры, находящиеся на расстоянии L = 5 см друг от друга, и посередине между ними к нему приложили силу 28 Н. При этом стрела прогиба оказалась равной 1,5 мм. Определите модуль Юнга для этой кости.

8. Самостоятельная работа студентов:

По учебнику Антонова В.Ф. и др. (§§ 20.4.) изучите временное соотношение между потенциалом действия кардиомицита и одиночным сокращением.

9. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 30 мин.

3. Решение ситуационных задач – 60 мин.

4. Текущий контроль знаний – 30 мин

5. Подведение итогов занятия – 10 мин.

10. Перечень учебной литературы к занятию:

1.Ремизов А.Н. Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика. М., «Дрофа», 2008, §§ 8.3, 8.4.

Подробности

Особенностью электромеханического сопряжения в сердечной мышце является то, что при возбуждении миокарда ионы кальция поступают в саркоплазму не только из цистерн саркоплазматического ретикулума, но также из Т-трубоче к. Без этого дополнительного источника ионов кальция сокращение сердечной мышцы было бы недостаточно сильным. Дело в том, что в отличие от скелетной мышцы саркоплазматический ретикулум в кардиомиоцитах развит слабее .

Что касается системы Т-трубочек, то они являются мощным депо кальция . Их диаметр в 5 раз, а объем жидкости в них в 25 раз больше, чем в волокнах скелетных мышц. Кроме того, в Т-трубочках имеется большое количество мукополисахаридов , несущих на поверхности отрицательный заряд. Связываясь с ионами кальция, они создают значительный запас этих ионов, способных немедленно диффундировать в саркоплазму при возбуждении.

Сила сокращения кардиомиоцитов зависит от внеклеточного кальция, а скелетных мышц - нет.

В отличие от скелетных мышц сила сокращения миокарда в значительной степени зависит от концентрации кальция во внеклеточной жидкости . Дело в том, что хорошо развитая система Т-трубочек, открываясь в окружающее внеклеточное пространство, заполнена внеклеточной (интерстициальной) жидкостью с высоким содержанием кальция. Таким образом, внеклеточная жидкость проникает глубоко внутрь волокон по системе Т-трубочек и служит необходимым источником ионов кальция для развития мышечного сокращения.

Сила сокращения скелетных мышц практически не зависит от изменений концентрации кальция во внеклеточной жидкости . Сокращение скелетных мышц полностью обеспечивается ионами кальция, поступающими в саркоплазму из цистерн саркоплазматического ретикулума, т.е. из внутриклеточных источников.

В конце фазы плато потенциала действия вход ионов кальция в кардиомиоцит прекращается. Из саркоплазмы ионы кальция быстро удаляются как обратно в саркоплазматический ретикулум, так и во внеклеточную жидкость Т-трубочек. В результате цикл сокращения в миокарде завершается вплоть до поступления нового потенциала действия.

Длительность сокращения скелетных и сердечных мышц.

Сокращение сердечной мышцы начинается через несколько миллисекунд после начала потенциала действия и заканчивается через несколько миллисекунд после завершения потенциала действия. Таким образом, длительность сокращения миокарда зависит от длительности потенциала действия , включая фазу плато, и составляет 0,2 сек в миокарде предсердий и 0,3 сек в миокарде желудочков.

Рианодиновый рецептор (RyR).

Рианодиновый рецептор (RyR) в мышечных клетках выполняет важнейшую функцию сопряжения потенциала действия с мышечным сокращением . В скелетных мышцах рианодиновые рецепторы активируются посредством специализированного механизма прямого электромеханического сопряжения , а сокращение сердечной мышцы запускается по механизму Са2+-индуцированного выброса Са2+ .

Обнаружено три изоформы рианодинового рецептора: RyR1 , RyR2 , RyR3 , кодируемые тремя разными генами. RyR имеют несколько мест регуляции, которая осуществляется Са2+ , АТР, кальмодулином (КМ) , иммунофилином и кальцинеурином. Рецептор фосфорилируется CaKMPK II (CaKM-зависимая протеинкиназа II) и дефосфорилируется кальцинеурином. В скелетных мышцах RyR1 расположен на цистернах СР примыкающих к цитоплазматической мембране и его длинный цитоплазматический "хвост" (так называемый "foot"-регион, или "ножка") соприкасается с дигидроперидиновым рецептором (DHPR) на плазмалемме . Однако, непосредственное функциональное взаимодействия между RyR и DHPR на молекулярном уровне еще не показано. Обсуждается вопрос об участии третьего белка в образовании контакта между RyR и DHPR.

Согласно разным структурным моделям С-конец RyR содержит от до 10 (12) трансмембранных доменов, формирующих мембранную пору. Активность RyR модулируется растительным алкалоидом рианодином из коры Ryania speciosa, что и определило его название. На каналы изолированные из мышц позвоночных и ракообразных рианодин в концентрациях от нМ до мкМ оказывает активирующее влияние, тогда как в концентрациях выше 100 мкМ он вызывает полное закрывание каналов. Было постулировано, что рианодин связывается с каналом в открытом состоянии. Физиологическим активатором рианодинового рецептора, в частности его сердечной изоформы и рианодин-чувствительного Ca2+- канала яйцеклеток морских ежей является циклическая АДР-рибоза (сADPR) - наиболее мощный из известных Са2+-высвобождающих агентов. Полумаксимальное высвобождение Са2+ в гомогенатах яйцеклеток морских ежей наблюдается при наномолярных концентрациях сADPR, что на порядок ниже, чем для IP3. Крутая зависимость активности RR от концентрации Са2+ (см рис. 6.8) позволяет говорить о механизме выброса Са2+ в присутствии cADPR как о Са2+-индуцированном выходе Са2+.

CaКM-зависимая протеинкиназа фосфорилирует все три изоформы рецептора, что приводит к его активации . Показано, что PKA и GMP-зависимая протеинкиназа также способны фосфорилировать этот же сайт. Фосфорилирование этого сайта cAMP-зависимой протеинкиназой, в частности при стимуляции b-адренорецептора, активирует сердечную изоформу RyR.
Генерация Са2+-сигнала с участием cADPR, в настоящее время показана для ряда тканей и клеток, для млекопитающих и растений. У млекопитающих активация секреции везикул ацинарными клетками поджелудочной железы и секреции инсулина b-клетками весьма чувствительны к подъему Са2+, вызванному именно этим циклическим нуклеотидом.

Краткое резюме по рианодиновым рецепторам:

Рианодиновые рецепторы(RyR) представляют собой особый тип хемоактивируемых Са2+каналов, имеющихся в мембране СР. Для млекопитающих известны 3 изоформы:RyR1,RyR2,RyR3. Нокаут гена:RyR1иRyR2–смерть в период эмбрионал разв-я.RyR3–жизнеспос-ые живот; значит-ое сниж-е CICR .Для скел м-ц:бол-во RyR1 спарены с DHPR. Более значит-ым оказыв мех-м DICR.Для сердеч м-цы:тока один из 5-10 RyR2 спарен с DHPR. Большее знач играет мех-зм CICR. Работы Фабиато: Суть: Налич отриц-ой обр-ой св, представлен Ca2+-зависимой инактив-ей RyR. Мех-м: Активацион сайт хар-ся выс акт-ью и низк сродством. Инактив-ый сайт хар-тся низкой акт-ью и выс сродством. Повыш-е конц-ции Ca2+ прив-ит к повыш-ю сродства к агонистам у RyR. Опыты с трипсином подтверд сущест-ие как полож-ой так и отриц-ой регул. Мех-мы взаимод-я: Прямое,с участками внутрен доменов RyR.Ч/з белки-посредники. Действие на наруж участки RyR. В сост RyR входит от 80 до 100 остат цистеина, мн из кот м.б.подвергнуты модиф-ции. Дей-е ок-ей: Подав-е функц-ой акт-ти. Сниж-е способ-ти к регул другими факторами. Модификация с пом NO:В мал конц-ях–повыш актив-ть RyR. В выс-их–понижает акт-ть RyR.

Loading...Loading...